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Abstract. The paper develops a general theory for finite rubber viscoelasticity, and

specifies it in the form, convenient for solving problems important for rubber, tire and

space industries. Based on the quasi-linear approach of non-equilibrium

thermodynamics, a general nonlinear theory, has been developed for arbitrary non-

isothermal deformations of viscoelastic solids. In this theory, the constitutive equations

are presented as the sum of known equilibrium (rubber elastic) and non-equilibrium

(liquid polymer viscoelastic) terms. These equations are then simplified using several

modeling arguments. Stability constraints for the proposed constitutive equations are
also discussed. It is shown that only strong ellipticity criteria are applicable for assessing

stability of the equations governing viscoelastic solids.



1 INTRODUCTION

Within the general rational mechanics l, two types of continuum approaches to nonlinear

constitutive equations (CE's) for viscoelastic solids have been suggested for applications.

One is of the differential type (e.g. see2'3), well developed for viscoelastic liquids on the

basis of non-equilibrium thermodynamics. The other approach is the K-BKZ 4'5 single-

integral CE's. Both of them might be considered as complimentary in application to

viscoelastic solids, and more precisely, to the thermo-mechanical and relaxation

properties of cross-linked rubbers.

The effects of relaxation phenomena, which do not exist in pure elastic solids,

enhance complexity of problems when polymers are considered. Hence, viscoelastic

polymer solids demonstrate many nonlinear rheological effects, such as nonlinear creep

and relaxation, hysteresis etc., which are not observed in other solids. Because of this,

even geometrically simple problems that are analytically solvable for pure elastic solids

have to be treated numerically in the viscoelastic case.

There are practical needs for developing a thermodynamically based approach to

solid nonlinear viscoelasticity, which would be valid over a wide range of strains, strain

rates (frequencies) and temperatures. It seems that this approach should combine (i)

nonlinear multi-mode CE's of differential type generated by a part of relaxation spectrum

with high relaxation times, and (ii) nonlinear single integral CE generated by that part of

relaxation spectrum with low relaxation times. We suppose that both parts of the

combined CE are almost independent. Part (i) governs the relatively slow motions of a

continuum undergoing very large strains and obeying the WLF time-temperature

superposition principle at relatively high temperatures. Part (ii) governs the fast (up to

very fast) motions of continuum undergoing relatively small (even very small) strains and

obeying a different time-temperature scaling that is valid for the glassy state. Thus the

approach takes into account thermo-rheological complexity along with the high non-

linearity of elastic and viscoelastic deformations, including compressibility effects. To

make the approach reliable, the constraints of strong hyperbolicity and thermodynamic

stability are imposed on the developed CE's. In this paper, only the first part of the above

proposal, the part (i) of the CE's, is demonstrated. The second part (ii) will be displayed
elsewhere.

In models of a differential type for viscoelastic solid (cross-linked) rubbers, the

typical nonlinear pure elastic term should be included along with differential modes for

different and well-separated relaxation times. The simple assumption is that this term is

additive to the viscoelastic ones. In typical development6'70f these models, only a

nonlinear extension of the "standard" (three-parametric) linear viscoelastic solid model

has been used. Also, the treatment of the dissipative term in the evolution equation for

nonlinear Maxwell element in paper 6 is not convincing, and the whole approach taken in

the development of the evolution equation for this element in paper y is questionable. An

additional important question to ask of paper 7, where both the pure gum elastomers and

carbon black filled compounds were studied, is its treatment of Mullins hysteresis for

carbon black filled rubbers as a pure relaxation effect. It is known, however, that this

effect, being structurally reversible (i.e. thixotropic), takes several months at room

temperature for a complete recovery s. The differential modeling has another importance:



one can establishthe transformationof the CE from liquid to solid-like behavior via
vulcanizationusingchemorheologicalmodeling9.Surprisingly,this typeof modelingwas
donefirst for filled elastomercompounds8.

Other nonlinearviscoelasticmodelsof differential type have also beenrecently
proposedin the literature,beingbasedon pure continuummechanicsphenomenology.
For example,severalmodelshavebeendeveloped(seepaperI° andreferencesthere)that
include nonlinearelementsfor modelingplasticity effectswith a von-Misestype yield
criterion. Also, in paper1_the authorsattemptedto makea nonlinearextensionof the
linear 3-parametric"standard"model with two equivalentconstructionsof springsand
dashpot.The twp nonlinearmodelshavebeenpresentedin anawkwardform, basedon
the separation_'_thetotal viscoelastic strain into a product of elastic and inelastic
components,with theuseof the SecondLaw. Anotherapproach12,closein spirit to that
elaboratedhere,hasbeenrecentlyintroduced.Therethe authoranalyzedthe viscoelastic
solids in terms of a separatedset of nonlinear Maxwell modes (with hidden tensor
parameters),addedto theequilibrium elasticmode.Although the equilibrium modehas
beentreated in a generaland correct way, the evolution equations,as written, violate
materialobjectivity, andthe dissipationterm was takento besimilar to the stressin the
Maxwell mode (i.e. without strain inducedanisotropy).The samedefectsin analyzing
viscoelastic evolution equation in models for finitely deforming viscoelastic solids
(extendedfrom thethree-parametric"standard"solid viscoelasticmodel)areobservedin
papers13-15.Stability constraintswerenotdiscussedin papers6-15.

The first stepin a practicaldevelopmentof nonlinearmodelsfor viscoelasticsolids
using a multi-modal differential approach is elaboration of reliable methods for
determininglinear relaxationspectra.Sincemodernmolecularmodels(e.g. see 1618) are

still not reliable, the relaxation spectrum must be determined from experimental data.

Because this problem is ill-posed, some mathematical methods have been elaborated. The

Pade-Laplace method t9'2°, developed for viscoelastic liquids, is the easiest and most
reliable tool for effective discretization of relaxation spectra by a Prony series. When

applying the Pade-Laplace method to a viscoelastic solid (e.g. for cross-linked elastomer)

the true elastic component should be found first, via a preliminary experiment, and then

removed from the Pade-Laplace procedure.
The structure of the paper is as follows. Adopting the thermodynamic approach 2'3

developed for nonlinear liquid-like viscoelasticity, we initially develop a general non-

linear theory for elastic and viscoelastic nonlinear behavior of solids, with a single

nonlinear relaxation mode. We simplify the developed theory and then extend this

simplified format for the multi-mode case, along with a simplified fractioning of

compressible and incompressible effects in nonlinear elasticity and viscoelasticity. We

finish up by discussing the stability constraints imposed on the general theory, as well as

on the simplified and extended models.

J

2 STATE VARIABLES AND FREE ENERGY

Here we will employ the general approach of irreversible thermodynamics discussed in

various books (e.g. see2t). We assume that in the simple case under study, the state

variables for viscoelastic solid are: the temperature T, a measure of total strain, say, the

Finger tensor B, and a set of hidden variables that are taken to be symmetric, positive



definite, second-rank,non-dimensionaltensors b. Each tensor =kb is treated as the

Finger elastic (recoverable) strain, with the capability of being independently measured.

It is expected that a tensor b is associated with the nonlinear k th relaxation mechanism
-=k

that, can hopefully can properly describe the (highly) nonlinear relaxation phenomena

observed in cross-linked rubbers. In the following, we employ the Eulerian formulation

for presenting our constitutive equations and, without loss of generality, use a Cartesian

coordinate system.

To start off, we consider a single relaxation mechanism, whose elastic energy

associated with a non-steady deformation is described by the tensor b. Being mostly

interested in studies of isothermal deformation of isotropic viscoelastic solids, we

introduce as a proper thermodynamic potential, the Helmholtz' free energy density F per

mass unit, which depends on temperatureT and the basic invariants of tensors B and b.

The crucial simplifying assumption underlying all of today approaches is that the free

energy might be represented as a sum of two contributions, one from the equilibrium

processes (with tensorBas its parameter), and another from non-equilibrium processes

(with tensor b as its parameter):

F = F°(T;I_8,I_,I_)+ F_(T;I,,I2,I3). (1)

Here I_ and Is are respectively the basic invariants of tensors B and =b, defined as:

l_8=trB, l_=l/2(I2-trB2), I_=detB;
_ 3

lj=trb, I2=1/2(I]2-trb2), I3=detb

(2)

Then the "thermodynamic" stress tensor crr associated with the free energy F, is:

T

O" =O- +O" l
(3)

wherein

cr° = 2,0B . OF ° laB= 2p[F]°B + F°(1,BB-__B2) + F3°I_ 6=1

_y = 2pb. OF'/ab = 2p[F_' b + F2_(I_ b -b 2) + F3'I , _].

(F,e= aF°/az )

(F)=OF/OI_)

(4)

In eqs.(3) and (4), p is the density, _ is the unit tensor, o" and cr are pure elastic
-- =0 _1

(equilibrium) and viscoelastic (quasi-equilibrium) stresses, respectively. The only

physical reason to use the suggested form in the second equation in (4) is the explicit

assumption 2'3 that polymeric liquids and solids always possess an "instantaneous" elastic

limit, a quasi-equilibrium situation achieved on very fast (instantaneous) deformations,



where the temporaryentanglementsin macromoleculesact like additionalcross-links.
Note thatno incompressibilityhasbeenassumedhere.

The well-knownkinematicalrelationfor theFingertotalstrain B,

V 0

B=_B-B.e-e.B=O, (5)

V 0

will be used in the following, where B and B are upper convected and corotational

(Jaumann) tensor time derivatives, and e is the strain rate (or rate of deformation) tensor.

The existence of a like kinematical (or kinetic) equation that governs the evolution of

tensor b, the main goal of the following constitutive theory, has yet to be established.

3 ENTROPY PRODUCTION AND NONLINEAR NON-ISOTHERMAL

RELAXATION PHENOMENA

The dissipative effects have been thoroughly analyzed for viscoelastic liquids 2'3. In

viscoelastic solids, these effects are associated with their time dependent deformations.

The Clausius-Duham expression for the entropy production P, has the form:

TP s = -q. V__T+ tr(cr, e) - pelF / dt r (-> 0). (6)

Using (4) and (5), we can rewrite eq.(6) as follows:

0

Tp,. = -q. V__T+ tr[(cr - _o ) .e] - tr(cr . =b<. 1/ 2 _b)' (7)

The next step is introducing the kinetic relation for tensor =b, similar to the kinematical

equation (5). This has been intensively discussed in Ref. 3 and resulted in the definition of

a "thermodynamic flux", the tensor e , such that

0

b-b.e -e .b=O. (8)

Note that in the equilibrium limit, b + B e --->e cr -+ cr and eq.(8) coincides with

eq.(5). Therefore it is convenient to introduce the pure non-equilibrium (dissipative)

quantities, the stress cr and strain rate e that vanish in the equilibrium:
-_-p =p

r (9)o -G-o" =G-o- -o" ; e -=e-e .

Substituting the second relation in (9) into eq.(8) reduces the kinetic equation to the form:



V

b+b.e +e .b=0. (10)
_ _ --p =p

Here the dissipative strain rate tensor e has yet to be established, and is expressed as a
=p

function of temperature and the tensors B and b.

Substituting also eqs.(9) into (10) into (7) finally yields:

TP,. = -q-_ _VT+ tr(crp= •=e)+ tr(oj= •=pe) (>_ 0). ( 11 )

The entropy production in eq.(43) is now presented as a typical bilinear form ZX_.Yk,

where { X _ }={ _VT, o'l, 0 1}are the independent thermodynamic forces of different tensor

dimensionatities, and conjugated to them are the quantities, { Yk }={ q,e ,ep }, which are

independent thermodynamic fluxes. Three independent dissipative sources are now

clearly seen in equation (11). They are due to the non-isothermality (the first term in

eq.(11)), and two contributions in mechanical dissipation in the system (the second and

third terms in eq.(ll)): (i) the mechanical dissipation produced by work of the

irreversible stress cr on the total strain rate e, and (ii) the mechanical dissipation

produced by work of the viscoelastic stress cr on the irreversible strain rate e
_l =p "

Using the arguments of tensor dimensionality and Onsager symmetry of kinetic

coefficients, we can write the CE's in the general quasi-linear form:

cr =M 1 'e-M z '0" I , e =M 2 e+M 3 o"l ,
p -- = p =

M k =Mk(T,B,b); (12)

q = -r. VT; a- = r(T,B,b) (13)

Here the kinetic coefficients M k are tensors with rank of four, symmetric within the first

and second pairs of indices, and symmetric by transposition between the first and second

pairs of indices. Tensor M 1 has a dimensionality of viscosity, tensor Mzis non-

dimensional, and tensor M3has a dimensionality of reciprocal viscosity. The scalar

I eproducts in eq.(12) mean, (MI :e) 0. -Mijk_ _k,etc. The heat conductivity __ris presented

in eq.(13) as a second order symmetric tensor. The dependences of the kinetic tensors in

eqs.(12) and (13) on the strain tensors __Band b demonstrate the effect of strain induced

anisotropy. Substituting eqs.(12) and (13) into eq.(11) presents the entropy production as

the positively definite quadratic form:

TP,. = tr(r=. VTVT) + TR(M, :ee) + TR(M 3 : O'lO" 1) (_> O) .
(14)

Due to eq.(14) the second rank tensor rand the two rank of four kinetic tensors Mland

M3are positively definite. Eq.(14) imposes no thermodynamic constraint on the kinetic



coefficient M 2 from eq.(12). The complicated general structure of the rank-four kinetic

tensors was explicitly exposed in Ref. =. The general structure of the heat conductivity

tensor tc(T,B,c), also quite complicated, can be readily established using the

representation theorems 1 (p.35). Equations (10), (12) and (13) present the closed set of

CE's for non-isothermal, finite, solid, compressible viscoelasticity.

Introducing the heat capacity cjunder constant tensors _Band =b as ca = _U/_T =,=_i,,

reduces the balance of internal energy U to the common heat equation:

,OcadT /dt = V ._. VT + tr( cr. e) . (15)

In the case of rubber (entropic) elasticity, when U = U(T), the heat capacityc a is the

function of only temperature.
The above general phenomenological relations include in the consideration the

Kelvin-Voight stress that denies the commonly known "instantaneous" elastic response

that has been well documented in experiments. Therefore in the following, the only

admissible type of solid viscoelasticity, the Maxwell type with instantaneous response,

will be analyzed. This considerably simplifies the above CE's to the form:

r • • (M=M_) (16)or=or =or +or (M_=O, Ma=O) e =M(T,B,b) cr
-_--0 _1 ' =p -- -- _1 -

Here the expressions for cr and cy are given in eq.(4).
_0 _1

4 COMPRESSIBILITY EFFECTS

Although the above general theory includes the compressibility effects, it is convenient to

expose them explicitly Using the density as a new variable. We analyze initially the

compressibility effects in single-mode viscoelastic approach with instantaneous elasticity.

In the equilibrium (pure elastic) case, the free energy is represented in the form:

F = F _(T;I_, I_, I_), the stress tensor is given by the second formula in (4), with the

kinematical relation (5). Additionally, there are two well-known equations for mass

conservation:

I_=(po/p) 2, O,p+V-(pu)=0_ or dlnp/dt=-tre.= (17)

Here u is the velocity vector. Note that the second relation in eq.(17) is easily derived

from the first one and the kinematical equation (5). Using the first relation in eq.(17) we

now introduce instead of tensor __B, its "incompressible" part __ and density p,

/_ = (IB)-'/3_B= 3 --(P/Po) 2'3B'

^8with corresponding invariants I t of tensor _/}as:

(18)



i_8-tr_ (plPo):'3I, e i_=trff'=(plPo)4'3I_ iB=l (19)

Using eq.(19) the free energy F ° , can be expressed via the density p and new invariants

Ifl and [B2 as: F°(T,I_,I_,I_) = F°(T,p,I_,I_), with the representation of the stress

tensor as:

cr°=_p2_O_+2p[_°(_-l/3_e_)-!_°(B=-'-l/3ItS=)]. (20)

Eq.(20) has been derived by Truesdel123. The first term there represents the equilibrium

thermodynamic pressure, and the second, deviatoric term, demonstrates the effects of

isochoric ("shearing") deformations. Finally, using eqs.(17) and (18) reduces eq.(5) to the

"incompressible" form:

V 0

/} -/}-/}.8-_./? = 0 ; _-e-1/3&re=e-1/38__p-'dp/dt. (21)

The above derivation is repeated in the non-equilibrium, viscoelastic case, starting with

the introduction of a new irreversible ("density-like") variable pias: p'/Po = I-:/23 , and

leading to the similar formulae,

= (13 )-1/3 b_-= (pi/po)2/3b__, (18a)

II -trb= (pi /po)2/3I l , 12 =trb-'= (pi /po)4/3I 2 , *_3=1 . (19a)

Using eqs.(18a), (19a) reduces the evolution equation (10) to the following:

0

D-b.g-g.D+D._ +_ .,_=0; dlnpi /dt-tre =dlnp/dt=-tre . (22)
p =P =p =

Here _ and g are the deviators of the tensors e and e , respectively.
= =p = =p

Finally, using for the non-equilibrium part of free energy F J the presentation

F:(T,I_ ,I2,I3) = Fq(T, p_, I_̂ , _12), similar to that for the equilibrium part F ° , results in

the formulae for the complete stress tensor in the irreversible case:

O"= _pT d+ O'" pr = Po + P: ; 6- = 6- + 6" . (23)
' _ _-0 _.._-I

Po = P 20_° lop, p, = pp*OF:/3p_; (24)

^0 ^-1

(5 ° = 2p[_°(_-ll3i,Bd)-F2 (B -l/3gd)]. (25)

^ 1 ^-I

6- = 2p[_' (/_ - 1/ 3i I a) - F2 (b__ - 1/ 3/_2d)]. (26)



Here pr is the thermodynamic pressure due to compressibility of the viscoelastic solid,

with equilibrium P0 and non-equilibrium p: components; 6- is the thermodynamic stress

deviator consisting of two, equilibrium 6"0 and non-equilibrium d"l , deviator components.

5 SIMPLIFICATIONS AND MULTI-MODAL GENERALIZATIONS

Although only the theory with instantaneous elastic reply is considered in Section 3 and

below, it still requires more simplifications to be useful in practice. We now consider

several modeling arguments and corresponding steps introducing more simplicity in the

theory.

(i) The first step directed toward simplifying CE's has already been made in eq.(1), which

in fact is decoupling the free energy into a sum of equilibrium and quasi-equilibrium

parts. Although there are some fundamental questions regarding the validity of this

decoupling, it has been successfully used in many non-equilibrium theories.

(ii) In spirit of the point (i), it is also assumed that it is possible to decouple the

irreversible effects from the equilibrium response. It practically means that the kinetic

tensor M in eq.(16) depends on the temperature and non-equilibrium elastic tensor b.

This immediately reduces the evolution equation for tensor b to the form:

V

b+ (p(T, b) = 0. (10a)

This form has successfully been used in the thermodynamic theories 2'3 for viscoelastic

liquids. Here in (10a) (p(T,b_) is an isotropic tensor function of tensor b, whose properties

and specifications have been established in Refs. 2'3

(iii) Decoupling the bulk and shearing properties. This can be justified in the case of

large strains with relatively very small bulk deformations, which is the case of rubber

elasticity.
(iiia) Decoupling of the bulk and shearing thermodynamic properties. For the free

energy this means the additivity:

F : F°(T;I_)+F'(T;I_) o +F o:F; (T;p)

(27)

The stress tensor due to eq.(27) is therefore represented as:

cr=c_ (T,B)+cr (T,b )=-[po(T,p)+pk(T, pi)]6+do(T,B)+dk(T,[2_) (28)

(iiib) Decoupling 03"the bulk and shearing relaxation properties. Eq.(22) with the use

of simplification in (ii) (see eq.(10a)) can be represented as:

dln p i/dt +[c_(pi)/O_(T)](pi)2OF'2 /opi (T,p i) = dln p/dt (29)

0 ^2

/_-/_. g,- g./_ + 1/ 2[,B(] 1, I2 ) / Ot (T)] •[_b_ - 113(], - i 2 )_ - 81 = O. (30)



Equations (27)-(30) impose the full decoupling of bulk and shear viscoelastic evolution

equations. Due to the Second Law, the functions c_(p i) and /5'(,f 1, ]2) are positive. They

go to the unity in the equilibrium limit, when pi __>/9o, I1 -+ I2 --_ 3, and represent the

strain scaling factors for corresponding relaxation times, which are similar in concept to

the "material clocks" of the K-BKZ theory. The dissipative term in eq.(29) is written in

general form, whereas in eq.(30) it has been presented in the form proposed and tested for

polymer fluids and a gum rubbers 3 . The temperature dependent parameters 0_ (T) and

01 (T) are the bulk and shear relaxation times, which occur in linear viscoelasticity.

(iv) Simplified models for the heat conductivity tensor K in (13) can be suggested when

the tensor depends only on the equilibrium strain B, i.e. __ = h--(T,B). This dependence

predicts that after unloading the heat conductivity is isotropic. Therefore the crucial test

is measuring heat conductivity in a retardation experiment (i.e. after unloading).

In the multi-mode generalization of CE's for nonlinear solid-like viscoelasticity, we

adopt all of the modeling simplifications discussed above for a single relaxation mode.

We additionally advance the assumption that both the bulk and shearing relaxation times

are well separated:

O_(T) hOk (T) >> Oh+, (T); >> 0_< (T). (31)

Inequalities (31) which hold for viscoelastic liquids 3 give the opportunity to consider

overall nonlinear properties as the sum of nonlinear viscoelastic properties for

independent relaxation modes, where the free energy and stress (both bulk and shear

components) are the sums of these for nonlinear relaxation modes. Additionally, the

evolution equations of type (29), (30) also hold. For cross-linked rubbers, the fore

mentioned closed set of nonlinear constitutive equations of differential type has the nice

feature: they can model the properties of rubber-like materials in both the flow and solid

regions with changing parameters during cure reaction, when keeping the same

mathematical structure of equations, except for the equilibrium part.

Additionally, some scaling approaches, like well-known time-temperature scaling of

WLF type, could apply to both shear and bulk relaxations. Furthermore, the deformation

scaling 24 developed for viscoelastic liquids, if applicable, could significantly simplify

numerical computations for viscoelastic solids, too.

6 STABILITY CONSTRAINTS FOR CONSTITUTIVE EQUATIONS FOR

VIS COELASTIC SOLIDS

The formulation of field equations for viscoelastic solids should obey some stability

constraints. These constraints take into account the most fundamental properties of CE's,

related to the Second Law of thermodynamics, propagating various fast waves, and the

fundamental condition providing the continuity for a solution of a problem along the time

axis. Unlike CE's for viscoelastic liquids, in the case of viscoelastic solids, these

constraints are related only to the Hadamard stability (or the strong ellipticity, or the

strong hyperbolicity for wave propagating, or well posedness).



In the case of finite elasticity, the general (necessary and sufficient) condition of

strong ellipticity is:

A = Aij,_(B)xiyjx,,,y,, > O. (32)

The rank of four tensor Aijmn is defined for isotropic solids as:

Aq'"n(B)-_m " c3L, ' P =4Bin, pBit-_o " (33)

Here h is the Hencky .strain measure. Condition (32) of strong ellipticity means the

positive definiteness of the tensor Aqm_ considered in terms of a bi-quadratic form. It was
• • 95

reduced in both mcompresslble- and compressible 26'27 cases to a set of algebraic

inequalities imposed on the first and second free energy derivatives taken with respect to

three basic invariants I_. In the case of the linear stability analysis of disturbances

imposed on arbitrary, nonlinear, and generally time dependent stress-strain deformation

field, condition (32) of strong ellipticity coincides with the condition of strong

hyperbolicity.

_2Vi'_ i = Ao.,n (B)-Oik/Om k" > 0 . (34)

Here f2 = co-k. v is the frequency oscillations in the disturbance wave with a Doppler's

shift of the basic velocity field v = v(_x,t) being taken into account, where ki and Vj are

respectively the components of the wave vector and the vector amplitude of the velocity
disturbances• In the limit co --+ _o, k --+ _ one can consider a monochromatic plane wave

of disturbances as being restricted to a local analysis of stability• It has been proved (e.g.

see 28) that when a system is described by the quasi-linear set of PDE, the linear stability

analysis coincides with more general method of characteristics• Positive definiteness of

the form (34) means the possibility to continue in the positive direction of time axis, at

any time instant, any solution of the equations for finite elasticity• If this is impossible,

the characteristics are turned back, and near a turning point, their derivatives approach to

infinity• Thus, Hadamard instability is a typical ill posedness accompanying by the blow-

up instability. In the general case of compressibility, all possible types of waves of

disturbances are allowed, including longitudinal waves• However, when an elastic

material is treated as incompressible, i.e. to=const, the longitudinal waves of

disturbances are forbidden. Thus because of the incompressibility condition, the wave

and the velocity amplitude vectors are orthogonal: kjVj = 0.

When analyzing static stability, where infinitesimal (symmetric) strain disturbances

e are imposed on a given finite elastic strain B so that B=B +_ one obtains
.__ _0 ' _ _0 _

(instead of the strong ellipticity condition of eq.(32)), a thermodynamic stability

condition:



Ar = A,j,..,(B)_'ijc .... > 0 (35)

Although the fourth-rank tensor Aij,n,, is once again defined by eq.(33), it is easy to see

that the thermodynamic condition of stability (35) is only a necessary condition for

strong ellipticity (32).

The necessary and sufficient conditions for strong ellipticity are too complex and

awkward to be applied to every newly proposed CE. Therefore, several attempts have

been undertaken to find non-trivial, yet simple enough, sufficient conditions of strong

ellipticity.

Renardy 29 proved that the CE's for incompressible elastic and viscoelastic solids are

strongly elliptic, if the strain energy function F = F(T, Ij, 12), which here depends only

on two basic invariants, Ij and I2, can be represented as monotonically increasing and

convex function of _land _2. More complicated sufficient conditions for strong

ellipticity in compressible case have been recently derived in paper 3°.

7 REMARKS OF SPECIFICATION OF FUNCTIONS AND PARAMETERS

This Section briefly surveys the various literature specifications of mechanical properties

for rubber-like materials. More detailed description will be given in presentation and

elsewhere.

It has been documented 31'32 that the bulk properties of cross-linked rubbers are well

described by the van der Waals equation, where stability constraints can also be imposed.

Although the most popular for numerical applications is the Mooney-Rivlin potential, its

descriptive ability of shearing properties for the rubber materials is rather limited 33.

To the authors' knowledge, the widest range in description of various experimental

data for the cross-linked rubbers has been achieved using the Blatz-Sharda-Tschoegl

(BST) potential 34, which operates with the generalized strain measure B n . However, their

model does not lend itself to computational efficiency, since these problems can be

effectively treated only in the principal axes of tensor B. The stability constraints for this

potential are unknown, mostly because of the generalized strain measure involved.

Another elastic potential that has been recently proposed and well tested for
35

viscoelastic liquids can also be used for crosslinked rubbers. This potential is a

combination of the Mooney-Rivlin and Knowles 36 potentials, widely used for

calculations of large deformations of elastic solids. Using the Renardy sufficient

condition of strong ellipticity, some sufficient stability criteria for this potential might be
able to be established.

Several recent attempts were also made to propose expressions forelastic potentials

for very large deformations of elastic solids (e.g., see37'38), related to the finite

extensibility of elastomer chains. These approaches used the inverse Langevin function,

which is too complicated for solving complex problems. The easiest semi-empirical way

to include this effect into consideration was proposed by Gent 39, who was unaware that

the same approach has been proposed for viscoelastic liquids (see Ref. 5) utilizing

Warren's approximation of the inverse Langevin function ("Warren spring"4°). This type

of potential, depending only on I_, might describe well enough very large elastic



deformations.Theseusually occur in uniaxial extensionor in situationsclose to that,
which can be met in complex deformationswith high-level concentrationsof stresses.
However,at relatively low strains,predictionsof this potentialarein contradictionwith
experimentaldata33,which clearly showthe dependenceof elasticstresson the second
invariant 12. This means that in low and intermediate regions of elastic strains, the

potential 35 might be more preferable. It is possible to combine the potentials proposed in

papers 35'36 for describing the large range of elastic deformations presented in rubbers.

To describe the non-equilibrium nonlinear viscoelastic properties of crosslinked

rubbers one has to specify the elastic potentials for the tensors b and scaling factors
=k

presented in the evolution equations. The elastic potential that describes bulk non-

equilibrium properties could be taken, once again, in the van der Waals form 31'32, and a

potential for shear properties could be taken in the form used in Ref. 35 for viscoelastic

liquids. The function fl, which describes the dissipative properties in shear evolution

equations (36), could also be extracted from Ref. 35, where it has been applied to

viscoelastic liquids. The function a(p_), which describes the dissipative properties in

bulk evolution equations (35), has yet to be determined via experimental studies and/or

theoretical modeling.

Finally, the effects of stress induced anisotropy in thermal conductivity found in

papers 42'43 for uniaxial extension, could be easily generalized. This will be demonstrated

in the presentation.
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